Gabriel Hopfenmüller, Dr. Niklas Papathanasiou, sglux GmbH, Berlin, Germany
InterAqua Japan 01. – 03.02.2023
Approaches of LED in-line measurements and its traceable calibration
Zusammenfassung
UV measurement at UV LED arrays.
von sglux
Gabriel Hopfenmüller, Dr. Niklas Papathanasiou, sglux GmbH, Berlin, Germany
InterAqua Japan 01. – 03.02.2023
Approaches of LED in-line measurements and its traceable calibration
Zusammenfassung
UV measurement at UV LED arrays.
von sglux
M. Schraml¹, N. Papathanasiou², A. May¹, M. Rommel¹, T. Erlbacher³
¹Fraunhofer IISB, Erlangen, Germany
²sglux GmbH, Berlin, Germany
³Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
2023 IEEE Photonics Conference (IPC) 12. – 16.11.2023
4H-SiC PIN Photodiode for VUV Detection Using an Enhanced Emitter Doping Desig
Zusammenfassung
The fabrication of a novel Vacuum UV (VUV) sensitive 4H-SiC pin photodiode is presented. Aluminum ion implantation was used to fabricate a patterned emitter structure with p – and p + regions resulting in the highest reported VUV sensitivity for a SiC pin photodiode.
von sglux
Michael Schraml¹, Alexander May¹, Dr. Tobias Erlbacher¹, Dr. Niklas Papathanasiou², Dr. Tilman Weiss²,
¹Fraunhofer IISB, Erlangen, Germany
²sglux GmbH, Berlin, Germany
Zusammenfassung
4H silicon carbide (SiC) based pin photodiodes with a sensitivity in the vacuum ultraviolet spectrum (VUV) demand newly developed emitter doping profiles. This work features the first ever reported 4H-SiC pin photodiodes with an implanted p-emitter and a noticeable sensitivity at a wavelength of 200 nm. As a first step, Aluminum doping profiles produced by low energy ion implantation in 4H-SiC were characterized by secondary-ion mass spectrometry (SIMS). Photodiodes using these shallow emitters are compared to one with a deep p-emitter doping profile employing IV characteristics and the spectral response. SIMS results demonstrate the possibility of shallow Alimplantation profiles using low implantation energies with all emitter profiles featuring characteristic I-V results. For some shallow doping profiles, a meassurable signal at the upper limit of the VUV spectrum could be demonstrated, paving the way towards 4H-SiC pin photodiodes with sensitivities for wavelengths below 200 nm.