sglux-logo
bag-icon
Generic filters
Exact matches only
en
  • Shop
    • UV Photodiodes
    • UV TOCONs
      Photodiodes with integrated signal amplifier
    • UV Sensors
    • UV Radiometers
    • Customized solutions
    • UV Calibration
    • UV Index Measurement
    • Transducers for photodiodes
  • sglux ESG concept
  • Research
  • About Us
  • Contact Us
    • Distributors
    • Privacy Policy
    • Imprint
  • DE
  • EN
  • ES
  • FR

sglux

UV is our Business

  • DE
  • EN
  • ES
  • FR
Generic filters
Exact matches only
  • Research
  • About Us
  • Contact Us

2024 – Measuring UV radiation without filters – silicon carbide (SiC) photodiodes make it possible

1. February 2024 von sglux

Dr. Niklas Papathanasiou, sglux GmbH, Berlin, Germany

Sensor Magazin 2/2024 (c) Magazin Verlag

Abstract
For more than 20 years, the Berlin-based company sglux GmbH has been producing photodiodes and sensors for measuring UV radiation, as used in many areas of industrial production, medical technology, combustion control and for monitoring UV disinfection processes. The precise detection of the ultraviolet irradiance is of great importance for a controlled and efficient functioning. sglux solves these tasks with SiC-based photodiodes, since 2009 from in-house semiconductor production. SiC photodiodes have an advantage in the detection of UV radiation due to their high band gap of 3.26 eV, as they are insensitive to visible and near-infrared radiation. In addition, SiC photodiodes have very low dark currents, so that even the smallest amounts of radiation can be detected. In the measurement of strong UV radiation, SiC scores with its high resistance to degradation.

Filed Under: publications and reports, Research Tagged With: general, irradiance_all, photodiodes, sensors

2018 – UV measurements for medical applications using SiC photodiodes

14. September 2018 von sglux

Dr. Niklas Papathanasiou, Gabriel Hopfenmueller, Dr. Tilman Weiss
sglux GmbH, Berlin, Germany

Presentation on IoT-SNAP2018: IoT Enabling Sensing/Network/AI and Photonics Conference at
Optics & Photonics Intenational Congress OPIC 2018, Pacifico Yokohama, Yokohama, Japan

Abstract
In this contribution we report about SiC based UV photodiodes as the core component of smart UV sensors for various medical applications. In dialysis machines the transparency of urea is monitored by a SiC UV photodiode based UV transmission measurement module. A photodiode combined with an optical filter which reproduces the erythermal action spectrum helps Lupus patients to monitor their daily dose of solar UV radiation. sglux UVC sensor “UV-Safester” is a smartphone based tool to detect harmful UV radiation at a workplace employing the ICNIRP regulation. A wireless UV sensor module monitors the UV disinfection applied by disinfection robots in operating rooms.

Filed Under: publications and reports, Research Tagged With: general, irradiance_all, medical, sinter

2017 – UV Index monitoring in Europe

10. October 2017 von sglux

Alois W. Schmalwieser¹, Julian Gröbner², Mario Blumthaler³, Barbara Klotz³, Hugo De Backer⁴, David Bolsée⁵, Rolf Werner⁶, Davor Tomsic⁷, Ladislav Metelka⁸, Paul Eriksen⁹, Nis Jepsen⁹, Margit Aun¹⁰, Anu Heikkilä¹¹, Thierry Duprat¹², Henner Sandmann¹³, Tilman Weiss¹⁴, Alkis Bais¹⁵, Zoltan Toth¹⁶, Anna-Maria Siani¹⁷, Luisa Vaccaro¹⁸, Henri Diémoz¹⁹, Daniele Grifoni²⁰, Gaetano Zipoli²¹, Giuseppe Lorenzetto²², Boyan H. Petkov²³, Alcide Giorgio di Sarra²⁴, Francis Massen²⁵, Charles Yousif²⁶, Alexandr A. Aculinin²⁷, Peter den Outer²⁸, Tove Svendby²⁹, Arne Dahlback³⁰, Bjørn Johnsen³¹, Julita Biszczuk-Jakubowska³², Janusz Krzyscin³³, Diamantino Henriques³⁴, Natalia Chubarova³⁵, Predrag Kolarž³⁶, Zoran Mijatovic³⁷, Drago Groselj³⁸, Anna Pribullova³⁹, Juan Ramon Moreta Gonzales⁴⁰, Julia Bilbao⁴¹, José Manuel Vilaplana Guerrero⁴², Antonio Serrano⁴³, Sandra Andersson⁴⁴, Laurent Vuilleumier⁴⁵, Ann Webb⁴⁶, and John O’Hagan⁴⁷,

¹University of Veterinary Medicine, Unit of Physiology and Biophysics, Vienna, Austria, ²PMOD/WRC, Davos Dorf, Switzerland, ³Medical Univ. Innsbruck, Innsbruck, Austria, ⁴Royal Meteorological Institute of Belgium, Observations, Brussels, Belgium, ⁵Royal Belgian Institute for Space Aeronomy, Brussels, Belgium, ⁶Bulgarian Academy of Sciences, Stara Zagora, Bulgaria, ⁷Metorological and hydrological institute of Croatia, Metorological and hydrological institute of Croati, Croatia, ⁸Czech Hydrometeorological Institute, Solar and Ozone Department, Hradec Kralove, Czech Republic, ⁹Danish Meteorological Institute, Copenhagen, Denmark, ¹⁰Tartu Observatory, Tartumaa, Estonia, ¹¹Finnish Meteorological Institute, Helsinki, Finland, ¹²Météo-France, Toulouse Cedex, France, ¹³Bundesamt fur Strahlenschutz Neuherberg, Section for Optical Radiation, Neuherberg, Germany, ¹⁴sglux GmbH, Berlin, Germany, ¹⁵Aristotle University of Thessaloniki, Greece, ¹⁶Hungarian Meteorological Service, Marczell György Main Observatory, Budapest, Hungary, ¹⁷Sapienza Universita’ di Roma, Physics Department, Rome, Italy, ¹⁸ISPRA, Physical Agents Unit, Rome, Italy, ¹⁹ARPA Valle d’Aosta loc, Saint-Christophe, Italy, ²⁰LaMMA Consortium, Institute of Biometeorology of the National Research Council, Sesto Fiorentino, Italy, ²¹CNR-IBIMET, Florence, Italy, ²²ARPA di Vicenza, Vicenza, Italy, ²³National Research Council, Institute of Atmospheric Sciences and Climate, Bologna, Italy, ²⁴ENEA, Laboratory for Observations and Analyses of the Earth and Climate, Rome, Italy, ²⁵Lycée Classique de Diekirch, Computarium and meteoLCD, Diekirch, Luxembourg, ²⁶University of Malta, Institute for Sustainable Energy, Marsaxlokk, Malta, ²⁷Institute of Applied Physics of the Academy of Sciences of Moldova, Kishinev, Moldova (the Republic of), ²⁸Dutch National Health Institute (RIVM), Netherlands, ²⁹NILU – Norwegian Institute for Air Research, Kjeller, Norway, ³⁰University of Oslo, Institute of Physics, Oslo, Norway, ³¹Statens Stralevern, Monitoring and Research, Oesteras, Norway, ³²Institute of Meteorology and Water Management, Gdynia, Poland, ³³Institute of Geophysics, Polish Academy of Sciences, Warszw, Poland, ³⁴Instituto Português do Mar e da Atmosfera, Observatório Afonso Chaves, Ponta Delgada S. Miguel, Portugal, ³⁵Moscow State University, Moscow, Russian Federation, ³⁶University of Belgrade, Zemun, Serbia, ³⁷University of Novi Sad, Novi Sad, Serbia, ³⁸Slovenian Environment Agency, Ljubljana, Slovenia, ³⁹Slovakian Academy of Sciences, Tatranska Lomnica, Slovakia, ⁴⁰Spanish Meteorological Agency, Area of Atmospheric Observation Networks, Madrid, Spain, ⁴¹University of Valladolid, Valladolid, Spain, ⁴²National Institute for Aerospace Technology, Mazagon, Spain, ⁴³University of Extremadura, Department of Physics, Badajoz, Spain, ⁴⁴SMHI, Norköpping, Sweden, ⁴⁵MeteoSwiss, Atmospheric data division, Payerne, Switzerland, ⁴⁶University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland, ⁴⁷Public Health England Centre for Radiation Chemical and Environmental Hazards, Radiation Dosimetry, Didcot, United Kingdom of Great Britain and Northern Ireland

Journal: Photochemical & Photobiological Sciences, Publisher: The Royal Society of Chemistry.

Abstract
The UV Index was established more than 20 years ago as a tool for sun protection and health care. Shortly after its introduction, UV Index monitoring started in several countries either by newly acquired instruments or by converting measurements from existing instruments into the UV Index. The number of stations and networks has increased over the years. Currently, 160 stations in 25 European countries deliver online values to the public via the Internet. In this paper an overview of these UV Index monitoring sites in Europe is given. The overview includes instruments as well as quality assurance and quality control procedures. Furthermore, some examples are given about how UV Index values are presented to the public. Through these efforts, 57% of the European population is supplied with high quality information, enabling them to adapt behaviour. Although health care, including skin cancer prevention, is cost-effective, a proportion of the European population still doesn’t have access to UV Index information.

Filed Under: publications and reports, Research Tagged With: general, irradiance_med, UVI

Address

sglux GmbH
Richard-Willstätter-Str. 8
12489 Berlin, Germany
Tel: +49 (0) 30 53 01 52 11
Mail:

sglux delivers worldwide

Alternatively we are represented by our global sales partners FARNELL and DISTRELEC which cover more than 80 countries.

In your region the below listed Specialists distribute our products and provide further expertly assistance to find the best solution for your UV measurement work - almost round the clock.

Distributors
sglux GmbH 2024
Richard-Willstätter-Str. 8
D-12489 Berlin
Tel: +49 (0) 30 53 01 52 11
Mail: welcome@sglux.de
Imprint Privacy policy LinkedIn
We do not use any cookies for tracking or analyzing of your website visit. However, technical cookies are needed to enable shop orders and to follow your language preferences.
Imprint | Privacy Policy
I accept cookies