sglux-logo
bag-icon
Generic filters
Exact matches only
es
  • Tienda
    • Fotodiodos UV
    • TOCONs UV
      Fotodiodos con amplificador de medida integrado
    • Sondas de medición UV
    • Radiómetros UV
    • Soluciones personalizadas
    • Calibración UV
    • Medición del Índice UV
    • Transductores de medida para fotodiodos
  • Investigación
  • Sobre nosotros
  • Contacto
    • Distribuidores
    • Politica de privacidad
    • Aviso legal
  • DE
  • EN
  • ES
  • FR

sglux

UV is our Business

  • DE
  • EN
  • ES
  • FR
Generic filters
Exact matches only
  • Tienda
  • Investigación
  • Sobre nosotros
  • Contacto
Inicio / Productos / Medición del Índice UV / Safester UVI

Safester UVI

  • Radiómetro para la evaluación de peligros de radiación UV natural en lugares de trabajo según la norma ISO 17166 (Índice UV).
  • Con pantalla gráfica.
  • Consiste de un sensor UV calibrado y con certificado de calibracion, telefono celular android y cargador.
  • Entregado en un estuche.

Precio unitario: 1.010,00€

  • Descripción
  • Publicaciones

Descargar hoja de datos

Publicaciones

2024 Digital UV Sensors – The Smartphone becomes a Radiometer
Dr. Tilman Weiss, sglux GmbH, Berlin, Germany

Abstract
Sensor Magazin 4/2024 (c) Magazin Verlag

UV radiation is used in many areas of industrial production, in medical devices and for disinfection. Precise measurement of irradiance is important for the controlled and efficient use of UV radiation. The UV measuring devices used for these applications must be able to measure the UV irradiance reliably, reproducibly and traceably over 13 orders of magnitude, from a few pW/cm2 up to 10 W/cm2. This is where digital measuring probes show their strengths.
2024 – Digital UV Sensors simplify measurement and control
Dr. Tilman Weiss¹, Fred Perry²
¹sglux GmbH, Berlin, Germany
²Boston Electronics Corporation, Brookline, USA

Journal Contribution to the IUVA UV Solutions Magazine (c) IUVA
2021 – How two sglux photodiodes contribute to the NASA 2021 Perseverance mission
Luther W. Beegle et al.
Space Sci Rev (2021) 217:58

Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation

Abstract
The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) is a robotic arm-mounted instrument on NASA’s Perseverance rover. SHERLOC has two primary boresights. The Spectroscopy boresight generates spatially resolved chemical maps using fluorescence and Raman spectroscopy coupled to microscopic images (10.1 μm/pixel). The second boresight is a Wide Angle Topographic Sensor for Operations and eNgineering (WATSON); a copy of the Mars Science Labora- tory (MSL) Mars Hand Lens Imager (MAHLI) that obtains color images from microscopic scales (∼13 μm/pixel) to infinity. SHERLOC Spectroscopy focuses a 40 μs pulsed deep UV neon-copper laser (248.6 nm), to a ∼100 μm spot on a target at a working distance of ∼48 mm. Fluorescence emissions from organics, and Raman scattered photons from organics and minerals, are spectrally resolved with a single diffractive grating spectrograph with a spectral range of 250 to ∼370 nm. Because the fluorescence and Raman regions are natu- rally separated with deep UV excitation (<250 nm), the Raman region ∼ 800 – 4000 cm−1 (250 to 273 nm) and the fluorescence region (274 to ∼370 nm) are acquired simultaneously without time gating or additional mechanisms. SHERLOC science begins by using an Aut- ofocus Context Imager (ACI) to obtain target focus and acquire 10.1 μm/pixel greyscale images. Chemical maps of organic and mineral signatures are acquired by the orchestration of an internal scanning mirror that moves the focused laser spot across discrete points on the target surface where spectra are captured on the spectrometer detector. ACI images and chemical maps (< 100 μm/mapping pixel) will enable the first Mars in situ view of the spa- tial distribution and interaction between organics, minerals, and chemicals important to the assessment of potential biogenicity (containing CHNOPS). Single robotic arm placement chemical maps can cover areas up to 7×7 mm in area and, with the < 10 min acquisition time per map, larger mosaics are possible with arm movements. This microscopic view of the organic geochemistry of a target at the Perseverance field site, when combined with the other instruments, such as Mastcam-Z, PIXL, and SuperCam, will enable unprecedented analysis of geological materials for both scientific research and determination of which sam- ples to collect and cache for Mars sample return.

2020 – Inter-Comparison Campaign of Solar UVR Instruments under Clear Sky Conditions at Reunion Island (21°S, 55°E)
Jean-Maurice Cadet¹, Thierry Portafaix¹, Hassan Bencherif¹², Kévin Lamy¹, Colette Brogniez³, Frédérique Auriol³, Jean-Marc Metzger⁴, Louis-Etienne Boudreault⁵, Caradee Yael Wright⁶⁷
¹LACy, Laboratoire de l’Atmosphère et des Cyclones (UMR 8105 CNRS, Université de La Réunion, Météo-France), 97744 Saint-Denis de La Réunion, France.
²School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4041, South Africa. ³Laboratoire d’Optique Atmosphérique, Université Lille, CNRS, UMR 8518, F-59000 Lille, France. ⁴Observatoire des Sciences de l’Univers de la Réunion, UMS 3365, 97744 Saint-Denis de la Réunion, France.
⁵Reuniwatt, 97490 Sainte Clotilde de la réunion, France.
⁶Department of Geography, Geo-informatics and Meteorology, University of Pretoria, Pretoria 0002, South Africa.
⁷Environment and Health Research Unit, South African Medical Research Council, Pretoria 0001, South Africa.

Int J Environ Res Public Health. 2020 Apr 21;17(8):2867. doi: 10.3390/ijerph17082867

Abstract
Measurement of solar ultraviolet radiation (UVR) is important for the assessment of potential beneficial and adverse impacts on the biosphere, plants, animals, and humans. Excess solar UVR exposure in humans is associated with skin carcinogenesis and immunosuppression. Several factors influence solar UVR at the Earth’s surface, such as latitude and cloud cover. Given the potential risks from solar UVR there is a need to measure solar UVR at different locations using effective instrumentation. Various instruments are available to measure solar UVR, but some are expensive and others are not portable, both restrictive variables for exposure assessments. Here, we compared solar UVR sensors commercialized at low or moderate cost to assess their performance and quality of measurements against a high-grade Bentham spectrometer. The inter-comparison campaign took place between March 2018 and February 2019 at Saint-Denis, La Réunion. Instruments evaluated included a Kipp&Zonen UVS-E-T radiometer, a Solar Light UV-Biometer, a SGLux UV-Cosine radiometer, and a Davis radiometer. Cloud fraction was considered using a SkyCamVision all-sky camera and the Tropospheric Ultraviolet Visible radiative transfer model was used to model clear-sky conditions. Overall, there was good reliability between the instruments over time, except for the Davis radiometer, which showed dependence on solar zenith angle. The Solar Light UV-Biometer and the Kipp&Zonen radiometer gave satisfactory results, while the low-cost SGLux radiometer performed better in clear sky conditions. Future studies should investigate temporal drift and stability over time.

2017 – UV Index monitoring in Europe
Alois W. Schmalwieser¹, Julian Gröbner², Mario Blumthaler³, Barbara Klotz³, Hugo De Backer⁴, David Bolsée⁵, Rolf Werner⁶, Davor Tomsic⁷, Ladislav Metelka⁸, Paul Eriksen⁹, Nis Jepsen⁹, Margit Aun¹⁰, Anu Heikkilä¹¹, Thierry Duprat¹², Henner Sandmann¹³, Tilman Weiss¹⁴, Alkis Bais¹⁵, Zoltan Toth¹⁶, Anna-Maria Siani¹⁷, Luisa Vaccaro¹⁸, Henri Diémoz¹⁹, Daniele Grifoni²⁰, Gaetano Zipoli²¹, Giuseppe Lorenzetto²², Boyan H. Petkov²³, Alcide Giorgio di Sarra²⁴, Francis Massen²⁵, Charles Yousif²⁶, Alexandr A. Aculinin²⁷, Peter den Outer²⁸, Tove Svendby²⁹, Arne Dahlback³⁰, Bjørn Johnsen³¹, Julita Biszczuk-Jakubowska³², Janusz Krzyscin³³, Diamantino Henriques³⁴, Natalia Chubarova³⁵, Predrag Kolarž³⁶, Zoran Mijatovic³⁷, Drago Groselj³⁸, Anna Pribullova³⁹, Juan Ramon Moreta Gonzales⁴⁰, Julia Bilbao⁴¹, José Manuel Vilaplana Guerrero⁴², Antonio Serrano⁴³, Sandra Andersson⁴⁴, Laurent Vuilleumier⁴⁵, Ann Webb⁴⁶, and John O’Hagan⁴⁷,

¹University of Veterinary Medicine, Unit of Physiology and Biophysics, Vienna, Austria, ²PMOD/WRC, Davos Dorf, Switzerland, ³Medical Univ. Innsbruck, Innsbruck, Austria, ⁴Royal Meteorological Institute of Belgium, Observations, Brussels, Belgium, ⁵Royal Belgian Institute for Space Aeronomy, Brussels, Belgium, ⁶Bulgarian Academy of Sciences, Stara Zagora, Bulgaria, ⁷Metorological and hydrological institute of Croatia, Metorological and hydrological institute of Croati, Croatia, ⁸Czech Hydrometeorological Institute, Solar and Ozone Department, Hradec Kralove, Czech Republic, ⁹Danish Meteorological Institute, Copenhagen, Denmark, ¹⁰Tartu Observatory, Tartumaa, Estonia, ¹¹Finnish Meteorological Institute, Helsinki, Finland, ¹²Météo-France, Toulouse Cedex, France, ¹³Bundesamt fur Strahlenschutz Neuherberg, Section for Optical Radiation, Neuherberg, Germany, ¹⁴sglux GmbH, Berlin, Germany, ¹⁵Aristotle University of Thessaloniki, Greece, ¹⁶Hungarian Meteorological Service, Marczell György Main Observatory, Budapest, Hungary, ¹⁷Sapienza Universita’ di Roma, Physics Department, Rome, Italy, ¹⁸ISPRA, Physical Agents Unit, Rome, Italy, ¹⁹ARPA Valle d’Aosta loc, Saint-Christophe, Italy, ²⁰LaMMA Consortium, Institute of Biometeorology of the National Research Council, Sesto Fiorentino, Italy, ²¹CNR-IBIMET, Florence, Italy, ²²ARPA di Vicenza, Vicenza, Italy, ²³National Research Council, Institute of Atmospheric Sciences and Climate, Bologna, Italy, ²⁴ENEA, Laboratory for Observations and Analyses of the Earth and Climate, Rome, Italy, ²⁵Lycée Classique de Diekirch, Computarium and meteoLCD, Diekirch, Luxembourg, ²⁶University of Malta, Institute for Sustainable Energy, Marsaxlokk, Malta, ²⁷Institute of Applied Physics of the Academy of Sciences of Moldova, Kishinev, Moldova (the Republic of), ²⁸Dutch National Health Institute (RIVM), Netherlands, ²⁹NILU – Norwegian Institute for Air Research, Kjeller, Norway, ³⁰University of Oslo, Institute of Physics, Oslo, Norway, ³¹Statens Stralevern, Monitoring and Research, Oesteras, Norway, ³²Institute of Meteorology and Water Management, Gdynia, Poland, ³³Institute of Geophysics, Polish Academy of Sciences, Warszw, Poland, ³⁴Instituto Português do Mar e da Atmosfera, Observatório Afonso Chaves, Ponta Delgada S. Miguel, Portugal, ³⁵Moscow State University, Moscow, Russian Federation, ³⁶University of Belgrade, Zemun, Serbia, ³⁷University of Novi Sad, Novi Sad, Serbia, ³⁸Slovenian Environment Agency, Ljubljana, Slovenia, ³⁹Slovakian Academy of Sciences, Tatranska Lomnica, Slovakia, ⁴⁰Spanish Meteorological Agency, Area of Atmospheric Observation Networks, Madrid, Spain, ⁴¹University of Valladolid, Valladolid, Spain, ⁴²National Institute for Aerospace Technology, Mazagon, Spain, ⁴³University of Extremadura, Department of Physics, Badajoz, Spain, ⁴⁴SMHI, Norköpping, Sweden, ⁴⁵MeteoSwiss, Atmospheric data division, Payerne, Switzerland, ⁴⁶University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland, ⁴⁷Public Health England Centre for Radiation Chemical and Environmental Hazards, Radiation Dosimetry, Didcot, United Kingdom of Great Britain and Northern Ireland

Journal: Photochemical & Photobiological Sciences, Publisher: The Royal Society of Chemistry.

Abstract
The UV Index was established more than 20 years ago as a tool for sun protection and health care. Shortly after its introduction, UV Index monitoring started in several countries either by newly acquired instruments or by converting measurements from existing instruments into the UV Index. The number of stations and networks has increased over the years. Currently, 160 stations in 25 European countries deliver online values to the public via the Internet. In this paper an overview of these UV Index monitoring sites in Europe is given. The overview includes instruments as well as quality assurance and quality control procedures. Furthermore, some examples are given about how UV Index values are presented to the public. Through these efforts, 57% of the European population is supplied with high quality information, enabling them to adapt behaviour. Although health care, including skin cancer prevention, is cost-effective, a proportion of the European population still doesn’t have access to UV Index information.

Ver todas las publicaciones

Con gusto le asesoramos sobre este producto

Romana Sonnenberg
Romana Sonnenberg
Dipl.-Ing.

+49 (0) 30 53015211
Gabriel Hopfenmüller
Gabriel Hopfenmüller
Dipl.-Ing.

+49 (0) 30 53015211
Tilman Weiss
Tilman Weiss
Dr.-Ing.

+49 (0) 30 53015211

Warenkorb

Safester UVI FAQ

Can I also connect sensors, e.g. from the Radiometer SXL 55, to a Safester UVI hand-held device?
No. Only sensors with an appropriate calibration can be connected to the Safester UVI. The device would issue an error message.
What value is determined with the Safester UVI?
The Safester UVI is determined as a variable value at the measuring point over the course of the day. Strictly speaking, this is not in accordance with the UVI definition*, but is also shown in the measurement network of the Federal Office for Radiation Protection. It enables a clear representation of the current UV irradiance and thus provides a very good guide for the type of sun protection measures to be taken. *Definition: The UV index describes the expected daily peak value of sunburn-inducing UV radiation on the ground.

Radiómetros UV FAQ

How much does a good UV radiometer cost?
UV radiometers are available on the internet for as little as about €50. However, we do not recommend buying these radiometers, as they usually do not provide any information about the calibration procedure and the spectral properties of the sensor. For hobby UV measurements or for a rough estimate of the UV irradiance during laboratory experiments, we recommend the measuring devices from the American manufacturer Solarmeter. These devices are based on an sglux SiC photodiode, are robust and come with calibration and spectral information. They are offered in various web shops for around EUR 200. The sglux UV radiometers cost about EUR 1,000. They are used in industrial applications or for scientific work where precise knowledge of the irradiance is relevant. In contrast to the Solarmeter products, our radiometers offer additional functions, such as dose measurement and a logging function. The sglux radiometers also have a field of view which is almost perfectly matched to the cosine function. This allows for a good reproducibility of the measurements and a good comparison with measurements taken at other locations. Another advantage of purchasing a sglux measurement device is that that we customize our devices in cooperation with the customer with regard to the dynamic range, the spectral properties and the PTB-traceable calibration, which is always included in the price. This is how we ensure the measurement success of our customers. The measurement devices from sglux are a bit less expensive than other devices on the market that are suitable for professional use. The reason for this is the display unit chosen by sglux, a smartphone. This eliminates the costs of an elaborate in-house production of the display unit. Sometimes a UV radiometer is not enough. This is always the case when knowledge of the total value (integral) of a radiation source does not provide sufficient information, but rather the spectrum of the source, resolved by wavelength, is to be determined. For this, a spectroradiometer is required. In our laboratories, we use the BTS spectrometers from Gigahertz Optik for this purpose, and we can recommend their purchase.
Which waterproof UV measuring device can I operate permanently outdoors?
sglux offers the UV transmitter, a solar-powered network node with a connection to the mobile phone network or the UVMicrolog data logger. Both devices can be equipped with different sensors and different calibrations.
Which device is suitable for a belt application (sterilization or curing line)?
sglux is specialized in in-line monitoring, i.e. the continuous monitoring of emitters using permanently installed sensors. By using the radiation-hard semiconductor material SiC, this is also possible at very high irradiation. If the design of the system does not permit in-line monitoring, the uvLink or the UVMicrolog can move across the conveyor belt.
Which devices are suitable for DVGW/ÖNORM-compliant measurement?
sglux offers the UVRRM reference radiometer, which is approved for many years. If more than one or special calibrations are required (e.g. LED), the UV Radiometer SXL 55 or the UVTOUCH should be used.
sglux GmbH 2024
Richard-Willstätter-Str. 8
D-12489 Berlin
Tel: +49 (0) 30 53 01 52 11
Mail: welcome@sglux.de
Aviso legal Politica de privacidad LinkedIn
We do not use any cookies for tracking or analyzing of your website visit. However, technical cookies are needed to enable shop orders and to follow your language preferences.
Imprint | Privacy Policy
I accept cookies