sglux-logo
bag-icon
Generic filters
Exact matches only
es
  • Tienda
    • Fotodiodos UV
    • TOCONs UV
      Fotodiodos con amplificador de medida integrado
    • Sondas de medición UV
    • Radiómetros UV
    • Soluciones personalizadas
    • Calibración UV
    • Medición del Índice UV
    • Transductores de medida para fotodiodos
  • Investigación
  • Sobre nosotros
  • Contacto
    • Distribuidores
    • Politica de privacidad
    • Aviso legal
  • DE
  • EN
  • ES
  • FR

sglux

UV is our Business

  • DE
  • EN
  • ES
  • FR
Generic filters
Exact matches only
  • Tienda
  • Investigación
  • Sobre nosotros
  • Contacto
Inicio / Productos / Sondas de medición UV / UV-Surface

UV-Surface

  • Sensor UV para mediciones de superficie
  • Utilizado para mediciones de referencia de radiación UV en superficies expuestas a la luz UV
  • Respuesta espectral, tipo de salida de señal y rango de medición a seleccionar
  • Tipos de salida de señal: voltaje de 0 a 5 V, corriente de 4 a 20 mA, interfaz de bus CAN o USB
  • Disponible con una calibración trazable PTB
  • Soporte de imán disponible opcionalmente

Precio unitario: 320,00€ – 440,00€

Limpiar
  • Descripción
  • Información adicional
  • CAD
  • Publicaciones

Descargar hoja de datos

Información adicional

Selección de sensores

UV-Surface, UV-Surface + montaje magnético

Download

Publicaciones

2024 – Measuring UV radiation without filters – silicon carbide (SiC) photodiodes make it possible
Dr. Niklas Papathanasiou, sglux GmbH, Berlin, Germany

Sensor Magazin 2/2024 (c) Magazin Verlag

Abstract
For more than 20 years, the Berlin-based company sglux GmbH has been producing photodiodes and sensors for measuring UV radiation, as used in many areas of industrial production, medical technology, combustion control and for monitoring UV disinfection processes. The precise detection of the ultraviolet irradiance is of great importance for a controlled and efficient functioning. sglux solves these tasks with SiC-based photodiodes, since 2009 from in-house semiconductor production. SiC photodiodes have an advantage in the detection of UV radiation due to their high band gap of 3.26 eV, as they are insensitive to visible and near-infrared radiation. In addition, SiC photodiodes have very low dark currents, so that even the smallest amounts of radiation can be detected. In the measurement of strong UV radiation, SiC scores with its high resistance to degradation.

2024 – Digital UV Sensors simplify measurement and control
Dr. Tilman Weiss¹, Fred Perry²
¹sglux GmbH, Berlin, Germany
²Boston Electronics Corporation, Brookline, USA

Journal Contribution to the IUVA UV Solutions Magazine (c) IUVA
2021 – How two sglux photodiodes contribute to the NASA 2021 Perseverance mission
Luther W. Beegle et al.
Space Sci Rev (2021) 217:58

Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation

Abstract
The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) is a robotic arm-mounted instrument on NASA’s Perseverance rover. SHERLOC has two primary boresights. The Spectroscopy boresight generates spatially resolved chemical maps using fluorescence and Raman spectroscopy coupled to microscopic images (10.1 μm/pixel). The second boresight is a Wide Angle Topographic Sensor for Operations and eNgineering (WATSON); a copy of the Mars Science Labora- tory (MSL) Mars Hand Lens Imager (MAHLI) that obtains color images from microscopic scales (∼13 μm/pixel) to infinity. SHERLOC Spectroscopy focuses a 40 μs pulsed deep UV neon-copper laser (248.6 nm), to a ∼100 μm spot on a target at a working distance of ∼48 mm. Fluorescence emissions from organics, and Raman scattered photons from organics and minerals, are spectrally resolved with a single diffractive grating spectrograph with a spectral range of 250 to ∼370 nm. Because the fluorescence and Raman regions are natu- rally separated with deep UV excitation (<250 nm), the Raman region ∼ 800 – 4000 cm−1 (250 to 273 nm) and the fluorescence region (274 to ∼370 nm) are acquired simultaneously without time gating or additional mechanisms. SHERLOC science begins by using an Aut- ofocus Context Imager (ACI) to obtain target focus and acquire 10.1 μm/pixel greyscale images. Chemical maps of organic and mineral signatures are acquired by the orchestration of an internal scanning mirror that moves the focused laser spot across discrete points on the target surface where spectra are captured on the spectrometer detector. ACI images and chemical maps (< 100 μm/mapping pixel) will enable the first Mars in situ view of the spa- tial distribution and interaction between organics, minerals, and chemicals important to the assessment of potential biogenicity (containing CHNOPS). Single robotic arm placement chemical maps can cover areas up to 7×7 mm in area and, with the < 10 min acquisition time per map, larger mosaics are possible with arm movements. This microscopic view of the organic geochemistry of a target at the Perseverance field site, when combined with the other instruments, such as Mastcam-Z, PIXL, and SuperCam, will enable unprecedented analysis of geological materials for both scientific research and determination of which sam- ples to collect and cache for Mars sample return.

2020 – Inter-Comparison Campaign of Solar UVR Instruments under Clear Sky Conditions at Reunion Island (21°S, 55°E)
Jean-Maurice Cadet¹, Thierry Portafaix¹, Hassan Bencherif¹², Kévin Lamy¹, Colette Brogniez³, Frédérique Auriol³, Jean-Marc Metzger⁴, Louis-Etienne Boudreault⁵, Caradee Yael Wright⁶⁷
¹LACy, Laboratoire de l’Atmosphère et des Cyclones (UMR 8105 CNRS, Université de La Réunion, Météo-France), 97744 Saint-Denis de La Réunion, France.
²School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4041, South Africa. ³Laboratoire d’Optique Atmosphérique, Université Lille, CNRS, UMR 8518, F-59000 Lille, France. ⁴Observatoire des Sciences de l’Univers de la Réunion, UMS 3365, 97744 Saint-Denis de la Réunion, France.
⁵Reuniwatt, 97490 Sainte Clotilde de la réunion, France.
⁶Department of Geography, Geo-informatics and Meteorology, University of Pretoria, Pretoria 0002, South Africa.
⁷Environment and Health Research Unit, South African Medical Research Council, Pretoria 0001, South Africa.

Int J Environ Res Public Health. 2020 Apr 21;17(8):2867. doi: 10.3390/ijerph17082867

Abstract
Measurement of solar ultraviolet radiation (UVR) is important for the assessment of potential beneficial and adverse impacts on the biosphere, plants, animals, and humans. Excess solar UVR exposure in humans is associated with skin carcinogenesis and immunosuppression. Several factors influence solar UVR at the Earth’s surface, such as latitude and cloud cover. Given the potential risks from solar UVR there is a need to measure solar UVR at different locations using effective instrumentation. Various instruments are available to measure solar UVR, but some are expensive and others are not portable, both restrictive variables for exposure assessments. Here, we compared solar UVR sensors commercialized at low or moderate cost to assess their performance and quality of measurements against a high-grade Bentham spectrometer. The inter-comparison campaign took place between March 2018 and February 2019 at Saint-Denis, La Réunion. Instruments evaluated included a Kipp&Zonen UVS-E-T radiometer, a Solar Light UV-Biometer, a SGLux UV-Cosine radiometer, and a Davis radiometer. Cloud fraction was considered using a SkyCamVision all-sky camera and the Tropospheric Ultraviolet Visible radiative transfer model was used to model clear-sky conditions. Overall, there was good reliability between the instruments over time, except for the Davis radiometer, which showed dependence on solar zenith angle. The Solar Light UV-Biometer and the Kipp&Zonen radiometer gave satisfactory results, while the low-cost SGLux radiometer performed better in clear sky conditions. Future studies should investigate temporal drift and stability over time.

2020 – UV sensors to control UVC surface disinfection
Dr. Tilman Weiss, sglux GmbH, Berlin, Germany

UV sensors to control UVC surface disinfection

Abstract
Besides chemical treatment, UVC sterilization is applied to disinfect air and tools in hospitals, doctor’s offices, pharmacies as well as food and pharmaceutical production facilities and public washrooms. These applications require measurements of the UV radiation either at its place of generation or at the position of the goods to be disinfected. This procedure is crucial to ensure that a sufficient germ killing UV dose hits the goods. The report presents further details and suitable sensor and radiometer products.

2017 – Degradation of opaque quartz-glass diffusers under high intensity UV irradiation
N. Papathanasiou, G. Hopfenmüller, Michael Matalla, T. Weiss,
sglux GmbH, Berlin, Germany

Presentation on IUVA World Congress Spotlights Water Disinfection Technologies 2017, Dubrovnik, Croatia

Abstract
In UV water purification applications UV sensors are monitoring the dosage of UV irradiation as according to ÖNORM and DVGW standards. sglux GmbH is manufacturing such sensors employing opaque synthetic quartz-glass diffusers as entrance windows. This paper investigates the influence of high-intensity UV irradiation on the transmission behavior of these diffusers. Quartz-glass and micro-porous quartz-glass were investigated. The sensors were continuously monitored while irradiated by a 1kW medium pressure Hg lamp with a total UV irradiance of 1000mW/cm² for 800 hours. Before and after the aging period the total transmissions of the diffusers were measured.
2017 – UV Index monitoring in Europe
Alois W. Schmalwieser¹, Julian Gröbner², Mario Blumthaler³, Barbara Klotz³, Hugo De Backer⁴, David Bolsée⁵, Rolf Werner⁶, Davor Tomsic⁷, Ladislav Metelka⁸, Paul Eriksen⁹, Nis Jepsen⁹, Margit Aun¹⁰, Anu Heikkilä¹¹, Thierry Duprat¹², Henner Sandmann¹³, Tilman Weiss¹⁴, Alkis Bais¹⁵, Zoltan Toth¹⁶, Anna-Maria Siani¹⁷, Luisa Vaccaro¹⁸, Henri Diémoz¹⁹, Daniele Grifoni²⁰, Gaetano Zipoli²¹, Giuseppe Lorenzetto²², Boyan H. Petkov²³, Alcide Giorgio di Sarra²⁴, Francis Massen²⁵, Charles Yousif²⁶, Alexandr A. Aculinin²⁷, Peter den Outer²⁸, Tove Svendby²⁹, Arne Dahlback³⁰, Bjørn Johnsen³¹, Julita Biszczuk-Jakubowska³², Janusz Krzyscin³³, Diamantino Henriques³⁴, Natalia Chubarova³⁵, Predrag Kolarž³⁶, Zoran Mijatovic³⁷, Drago Groselj³⁸, Anna Pribullova³⁹, Juan Ramon Moreta Gonzales⁴⁰, Julia Bilbao⁴¹, José Manuel Vilaplana Guerrero⁴², Antonio Serrano⁴³, Sandra Andersson⁴⁴, Laurent Vuilleumier⁴⁵, Ann Webb⁴⁶, and John O’Hagan⁴⁷,

¹University of Veterinary Medicine, Unit of Physiology and Biophysics, Vienna, Austria, ²PMOD/WRC, Davos Dorf, Switzerland, ³Medical Univ. Innsbruck, Innsbruck, Austria, ⁴Royal Meteorological Institute of Belgium, Observations, Brussels, Belgium, ⁵Royal Belgian Institute for Space Aeronomy, Brussels, Belgium, ⁶Bulgarian Academy of Sciences, Stara Zagora, Bulgaria, ⁷Metorological and hydrological institute of Croatia, Metorological and hydrological institute of Croati, Croatia, ⁸Czech Hydrometeorological Institute, Solar and Ozone Department, Hradec Kralove, Czech Republic, ⁹Danish Meteorological Institute, Copenhagen, Denmark, ¹⁰Tartu Observatory, Tartumaa, Estonia, ¹¹Finnish Meteorological Institute, Helsinki, Finland, ¹²Météo-France, Toulouse Cedex, France, ¹³Bundesamt fur Strahlenschutz Neuherberg, Section for Optical Radiation, Neuherberg, Germany, ¹⁴sglux GmbH, Berlin, Germany, ¹⁵Aristotle University of Thessaloniki, Greece, ¹⁶Hungarian Meteorological Service, Marczell György Main Observatory, Budapest, Hungary, ¹⁷Sapienza Universita’ di Roma, Physics Department, Rome, Italy, ¹⁸ISPRA, Physical Agents Unit, Rome, Italy, ¹⁹ARPA Valle d’Aosta loc, Saint-Christophe, Italy, ²⁰LaMMA Consortium, Institute of Biometeorology of the National Research Council, Sesto Fiorentino, Italy, ²¹CNR-IBIMET, Florence, Italy, ²²ARPA di Vicenza, Vicenza, Italy, ²³National Research Council, Institute of Atmospheric Sciences and Climate, Bologna, Italy, ²⁴ENEA, Laboratory for Observations and Analyses of the Earth and Climate, Rome, Italy, ²⁵Lycée Classique de Diekirch, Computarium and meteoLCD, Diekirch, Luxembourg, ²⁶University of Malta, Institute for Sustainable Energy, Marsaxlokk, Malta, ²⁷Institute of Applied Physics of the Academy of Sciences of Moldova, Kishinev, Moldova (the Republic of), ²⁸Dutch National Health Institute (RIVM), Netherlands, ²⁹NILU – Norwegian Institute for Air Research, Kjeller, Norway, ³⁰University of Oslo, Institute of Physics, Oslo, Norway, ³¹Statens Stralevern, Monitoring and Research, Oesteras, Norway, ³²Institute of Meteorology and Water Management, Gdynia, Poland, ³³Institute of Geophysics, Polish Academy of Sciences, Warszw, Poland, ³⁴Instituto Português do Mar e da Atmosfera, Observatório Afonso Chaves, Ponta Delgada S. Miguel, Portugal, ³⁵Moscow State University, Moscow, Russian Federation, ³⁶University of Belgrade, Zemun, Serbia, ³⁷University of Novi Sad, Novi Sad, Serbia, ³⁸Slovenian Environment Agency, Ljubljana, Slovenia, ³⁹Slovakian Academy of Sciences, Tatranska Lomnica, Slovakia, ⁴⁰Spanish Meteorological Agency, Area of Atmospheric Observation Networks, Madrid, Spain, ⁴¹University of Valladolid, Valladolid, Spain, ⁴²National Institute for Aerospace Technology, Mazagon, Spain, ⁴³University of Extremadura, Department of Physics, Badajoz, Spain, ⁴⁴SMHI, Norköpping, Sweden, ⁴⁵MeteoSwiss, Atmospheric data division, Payerne, Switzerland, ⁴⁶University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland, ⁴⁷Public Health England Centre for Radiation Chemical and Environmental Hazards, Radiation Dosimetry, Didcot, United Kingdom of Great Britain and Northern Ireland

Journal: Photochemical & Photobiological Sciences, Publisher: The Royal Society of Chemistry.

Abstract
The UV Index was established more than 20 years ago as a tool for sun protection and health care. Shortly after its introduction, UV Index monitoring started in several countries either by newly acquired instruments or by converting measurements from existing instruments into the UV Index. The number of stations and networks has increased over the years. Currently, 160 stations in 25 European countries deliver online values to the public via the Internet. In this paper an overview of these UV Index monitoring sites in Europe is given. The overview includes instruments as well as quality assurance and quality control procedures. Furthermore, some examples are given about how UV Index values are presented to the public. Through these efforts, 57% of the European population is supplied with high quality information, enabling them to adapt behaviour. Although health care, including skin cancer prevention, is cost-effective, a proportion of the European population still doesn’t have access to UV Index information.
2011 – Characterisation of new optical diffusers used in high irradiance UV radiometers
Barton¹, B., Sperfeld¹, P., Nowy¹, S., Towara¹, A., Hoepe¹, A., Teichert¹, S., Hopfenmueller², G., Baer³, M. and Kreuzberger³, T.
¹Physikalisch-Technische Bundesanstalt Braunschweig und Berlin (PTB), 4.1 Photometry and Applied Radiometry, Braunschweig, Germany, ²sglux GmbH, Berlin, Germany, ³SGIL Silicaglas GmbH, Langewiesen, Germany

Proceedings of NEWRAD2011, edited by S. Park and E. Ikonen. (Aalto University, Espoo, Finland, 2011) p. 278.

Abstract
Diffusers are essential components of UV radiometers used as transfer standards. They improve the insensitivity to differing radiation situations. In combination with a beam limiting aperture, a diffuser defines the irradiated area [1]. A detailed study of different properties of UV diffusers is shown.

Ver todas las publicaciones

Con gusto le asesoramos sobre este producto

Romana Sonnenberg
Romana Sonnenberg
Dipl.-Ing.

+49 (0) 30 53015211
Gabriel Hopfenmüller
Gabriel Hopfenmüller
Dipl.-Ing.

+49 (0) 30 53015211

Warenkorb

UV-Surface FAQ

How can I attach the sensor?
We offer a magnetic tripod holder for this sensor. This can be placed on any steel surface or attached to standard camera tripods using the 1/4" 20 UNC thread.

Sondas de medición UV FAQ

Is the sensor calibrated?
No, the sensor is not calibrated. If required, the sglux calibration laboratory offers an individual calibration service including a calibration certificate. This document assigns the voltage output or the current value of one specific probe to the irradiation of a specific UV radiation source. As-delivered the probe is sensitive in the specified range. Please find further details at the sglux website’s calibration section.
What must be observed with regard to EMC stability when installing a probe?
All sglux sensors are supplied with shielded cables. The shield must be earthed by the user on the measuring device side. On the sensor side, the shield is not connected to the sensor housing in order to avoid ground loops in the event of contact with a system housing with a different potential than the measuring device.
Which sensors can be used as a submersible sensors?
All our PTFE sensors (UV-Cosine, UV-Water-PTFE and UV-Radial) are generally suitable for this purpose and are supplied with a special cable gland.
What types of stainless steel are used for the sensors?
Our standard stainless steel is 1.4404, but we can also manufacture our sensors in other steel grades on request.
Which sensors can also be used to measure at higher temperatures (85-170°C)?
All stainless steel sensors can also be used at higher temperatures. These must then be configured with a photocurrent output, which is connected to an external amplifier such as the RADIKON_simple.
What about the time constant of a UV sensor?
By default our sensors do have a large time constant because most applications measure slowly changing signals. The time constant depends on the sensitivity of the device and ranges between 50ms and 200ms. For detection of Xenon flash light or pantograph arc detection according to EN 50317 we produce special solutions with application adapted time constants. If for other applications a shorter time constant than 50 ms … 200 ms is needed we are happy to produce a customized version. Time constant reduction is possible down to 100 µs depending on the irradiance level of the application (gain value).
Do you offer UV sensors for outdoor measurements?
We offer our UV-Cosine sensor for outdoor measurements. The housing is waterproof IP68 at window side, stain repellent and on request submersible.
sglux GmbH 2024
Richard-Willstätter-Str. 8
D-12489 Berlin
Tel: +49 (0) 30 53 01 52 11
Mail: welcome@sglux.de
Aviso legal Politica de privacidad LinkedIn
We do not use any cookies for tracking or analyzing of your website visit. However, technical cookies are needed to enable shop orders and to follow your language preferences.
Imprint | Privacy Policy
I accept cookies