sglux-logo
bag-icon
Generic filters
Exact matches only
fr
  • Boutique
    • Photodiodes UV
    • TOCONs UV
      Photodiodes avec amplificateur de mesure intégré
    • Sondes de mesure UV
    • Radiomètres UV
    • Solutions personnalisées
    • Calibration UV
    • Mesure d’indice UV
    • Transducteurs de mesure pour photodiodes
  • Recherche
  • À propos
  • Contact
    • Distributeurs
    • Protection des données (en anglais)
    • Mentions légales
  • DE
  • EN
  • ES
  • FR

sglux

UV is our Business

  • DE
  • EN
  • ES
  • FR
Generic filters
Exact matches only
  • Boutique
  • Recherche
  • À propos
  • Contact

2011 – Characterisation of SiC photodiodes for high irradiance UV radiometers

23. mai 2025 von sglux

S. Nowy¹, B. Barton¹, S. Pape¹, P. Sperfeld¹, D. Friedrich¹, S. Winter¹, G. Hopfenmueller², and T. Weiss²,
¹Physikalisch-Technische Bundesanstalt Braunschweig und Berlin (PTB), 4.1 Photometry and Applied Radiometry, Braunschweig, Germany, ²sglux GmbH, Berlin, Germany

Proceedings of NEWRAD2011, edited by S. Park and E. Ikonen. (Aalto University, Espoo, Finland, 2011) p. 203.

Abstract
For monitoring high UV irradiance, silicon carbide (SiC) based photodiodes are used. In this paper we describe the characterization of the novel SiC UV photodiodes in terms of their spectral and integral responsivity. Special attention is paid to the aging behavior of the photodiodes due to high UV irradiance. Artificial aging of the samples is performed by illumination with a high power medium pressure mercury discharge lamp.

Classé sous :Forschung, Veröffentlichungen und Berichte Balisé avec :irradiance_hi, photodiodes, science

2019 – UV degradation anaylsis of SiC and AlGaN based UV photodiodes

23. mai 2025 von sglux

Dr. Niklas Papathanasiou, sglux GmbH, Berlin, Germany

SiC AlGaN Aging Report

Zusammenfassung
SiC and AlGaN based UV photodiodes had been irradiated by Hg medium pressure lamps for 90 hours and a UV irradiation intensity of 60mW/cm². The SiC photodiodes showed no measurable degradation whereas the AlGaN photodiodes lost 80 % – 85 % of sensitivity.

Classé sous :Forschung, Veröffentlichungen und Berichte Balisé avec :irradiance_hi, led, photodiodes, science, stability

2022 – Marker Substances in the Aroma of Truffles

23. mai 2025 von sglux

Ruben Epping¹, Lilly Bliesener¹, Dr. Tilman Weiss², Matthias Koch¹, *
¹Division of Organic Trace Analysis and Food Analysis, Bundesanstalt für Materialforschung und -Prüfung, Berlin, Germany
²sglux GmbH, Berlin, Germany
*Authors to whom correspondence should be addressed.

Marker Substances in the Aroma of Truffles

Zusammenfassung
The aim of this study was to identify specific truffle marker substances within the truffle aroma. The aroma profile of different truffle species was analyzed using static headspace sampling with gas chromatography mass spectrometry analysis (SHS/GC-MS). Possible marker substances were identified, taking the additional literature into account. The selected marker substances were tested in an experiment with 19 truffle dogs. The hypothesis “If trained truffle dogs recognize the substances as supposed truffles in the context of an experiment, they can be regarded as specific” was made. As it would be nearly impossible to investigate every other possible emitter of the same compounds to determine their specificity, this hypothesis was a reasonable approximation. We were interested in the question of what it is the dogs actually search for on a chemical level and whether we can link their ability to find truffles to one or more specific marker substances. The results of the dog experiment are not as unambiguous as could have been expected based on the SHS/GC-MS measurements. Presumably, the truffle aroma is mainly characterized and perceived by dogs by dimethyl sulfide and dimethyl disulfide. However, as dogs are living beings and not analytical instruments, it seems unavoidable that one must live with some degree of uncertainty regarding these results.

Classé sous :Forschung, Veröffentlichungen und Berichte Balisé avec :customized, fluorescence, gap, irradiance_lo, science, truffles

2023 – Towards Sic-Based VUV Pin-Photodiodes – Investigations on 4H-SiC Photodiodes with Shallow Implanted Al Emitters

23. mai 2025 von sglux

Michael Schraml¹, Alexander May¹, Dr. Tobias Erlbacher¹, Dr. Niklas Papathanasiou², Dr. Tilman Weiss²,
¹Fraunhofer IISB, Erlangen, Germany
²sglux GmbH, Berlin, Germany

Towards SiC-Based VUV Pin-Photodiodes – Investigations on 4H-SiC Photodiodes with Shallow Implanted Al Emitters

Zusammenfassung
4H silicon carbide (SiC) based pin photodiodes with a sensitivity in the vacuum ultraviolet spectrum (VUV) demand newly developed emitter doping profiles. This work features the first ever reported 4H-SiC pin photodiodes with an implanted p-emitter and a noticeable sensitivity at a wavelength of 200 nm. As a first step, Aluminum doping profiles produced by low energy ion implantation in 4H-SiC were characterized by secondary-ion mass spectrometry (SIMS). Photodiodes using these shallow emitters are compared to one with a deep p-emitter doping profile employing IV characteristics and the spectral response. SIMS results demonstrate the possibility of shallow Alimplantation profiles using low implantation energies with all emitter profiles featuring characteristic I-V results. For some shallow doping profiles, a meassurable signal at the upper limit of the VUV spectrum could be demonstrated, paving the way towards 4H-SiC pin photodiodes with sensitivities for wavelengths below 200 nm.

Classé sous :Forschung, Veröffentlichungen und Berichte Balisé avec :flame, irradiance_all, science, VUV

2023 – 4H-SiC PIN Photodiode for VUV Detection Using an Enhanced Emitter Doping Design

23. mai 2025 von sglux

M. Schraml¹, N. Papathanasiou², A. May¹, M. Rommel¹, T. Erlbacher³
¹Fraunhofer IISB, Erlangen, Germany
²sglux GmbH, Berlin, Germany
³Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

2023 IEEE Photonics Conference (IPC) 12. – 16.11.2023
4H-SiC PIN Photodiode for VUV Detection Using an Enhanced Emitter Doping Desig

Zusammenfassung
The fabrication of a novel Vacuum UV (VUV) sensitive 4H-SiC pin photodiode is presented. Aluminum ion implantation was used to fabricate a patterned emitter structure with p – and p + regions resulting in the highest reported VUV sensitivity for a SiC pin photodiode.

Classé sous :Forschung, Veröffentlichungen und Berichte Balisé avec :irradiance_all, photodiodes, science, VUV

2021 – How two sglux photodiodes contribute to the NASA 2021 Perseverance mission

30. novembre 2021 von sglux

Luther W. Beegle et al.
Space Sci Rev (2021) 217:58

Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation

Zusammenfassung
The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) is a robotic arm-mounted instrument on NASA’s Perseverance rover. SHERLOC has two primary boresights. The Spectroscopy boresight generates spatially resolved chemical maps using fluorescence and Raman spectroscopy coupled to microscopic images (10.1 μm/pixel). The second boresight is a Wide Angle Topographic Sensor for Operations and eNgineering (WATSON); a copy of the Mars Science Labora- tory (MSL) Mars Hand Lens Imager (MAHLI) that obtains color images from microscopic scales (∼13 μm/pixel) to infinity. SHERLOC Spectroscopy focuses a 40 μs pulsed deep UV neon-copper laser (248.6 nm), to a ∼100 μm spot on a target at a working distance of ∼48 mm. Fluorescence emissions from organics, and Raman scattered photons from organics and minerals, are spectrally resolved with a single diffractive grating spectrograph with a spectral range of 250 to ∼370 nm. Because the fluorescence and Raman regions are natu- rally separated with deep UV excitation (<250 nm), the Raman region ∼ 800 – 4000 cm−1 (250 to 273 nm) and the fluorescence region (274 to ∼370 nm) are acquired simultaneously without time gating or additional mechanisms. SHERLOC science begins by using an Aut- ofocus Context Imager (ACI) to obtain target focus and acquire 10.1 μm/pixel greyscale images. Chemical maps of organic and mineral signatures are acquired by the orchestration of an internal scanning mirror that moves the focused laser spot across discrete points on the target surface where spectra are captured on the spectrometer detector. ACI images and chemical maps (< 100 μm/mapping pixel) will enable the first Mars in situ view of the spa- tial distribution and interaction between organics, minerals, and chemicals important to the assessment of potential biogenicity (containing CHNOPS). Single robotic arm placement chemical maps can cover areas up to 7×7 mm in area and, with the < 10 min acquisition time per map, larger mosaics are possible with arm movements. This microscopic view of the organic geochemistry of a target at the Perseverance field site, when combined with the other instruments, such as Mastcam-Z, PIXL, and SuperCam, will enable unprecedented analysis of geological materials for both scientific research and determination of which sam- ples to collect and cache for Mars sample return.

Classé sous :Forschung, Veröffentlichungen und Berichte Balisé avec :irradiance_all, photodiodes, science, UVI

2020 – Inter-Comparison Campaign of Solar UVR Instruments under Clear Sky Conditions at Reunion Island (21°S, 55°E)

19. mars 2020 von sglux

Jean-Maurice Cadet¹, Thierry Portafaix¹, Hassan Bencherif¹², Kévin Lamy¹, Colette Brogniez³, Frédérique Auriol³, Jean-Marc Metzger⁴, Louis-Etienne Boudreault⁵, Caradee Yael Wright⁶⁷
¹LACy, Laboratoire de l’Atmosphère et des Cyclones (UMR 8105 CNRS, Université de La Réunion, Météo-France), 97744 Saint-Denis de La Réunion, France.
²School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4041, South Africa.
³Laboratoire d’Optique Atmosphérique, Université Lille, CNRS, UMR 8518, F-59000 Lille, France.
⁴Observatoire des Sciences de l’Univers de la Réunion, UMS 3365, 97744 Saint-Denis de la Réunion, France.
⁵Reuniwatt, 97490 Sainte Clotilde de la réunion, France.
⁶Department of Geography, Geo-informatics and Meteorology, University of Pretoria, Pretoria 0002, South Africa.
⁷Environment and Health Research Unit, South African Medical Research Council, Pretoria 0001, South Africa.

Int J Environ Res Public Health. 2020 Apr 21;17(8):2867. doi: 10.3390/ijerph17082867

Zusammenfassung
Measurement of solar ultraviolet radiation (UVR) is important for the assessment of potential beneficial and adverse impacts on the biosphere, plants, animals, and humans. Excess solar UVR exposure in humans is associated with skin carcinogenesis and immunosuppression. Several factors influence solar UVR at the Earth’s surface, such as latitude and cloud cover. Given the potential risks from solar UVR there is a need to measure solar UVR at different locations using effective instrumentation. Various instruments are available to measure solar UVR, but some are expensive and others are not portable, both restrictive variables for exposure assessments. Here, we compared solar UVR sensors commercialized at low or moderate cost to assess their performance and quality of measurements against a high-grade Bentham spectrometer. The inter-comparison campaign took place between March 2018 and February 2019 at Saint-Denis, La Réunion. Instruments evaluated included a Kipp&Zonen UVS-E-T radiometer, a Solar Light UV-Biometer, a SGLux UV-Cosine radiometer, and a Davis radiometer. Cloud fraction was considered using a SkyCamVision all-sky camera and the Tropospheric Ultraviolet Visible radiative transfer model was used to model clear-sky conditions. Overall, there was good reliability between the instruments over time, except for the Davis radiometer, which showed dependence on solar zenith angle. The Solar Light UV-Biometer and the Kipp&Zonen radiometer gave satisfactory results, while the low-cost SGLux radiometer performed better in clear sky conditions. Future studies should investigate temporal drift and stability over time.

Classé sous :Forschung, Veröffentlichungen und Berichte Balisé avec :irradiance_med, science, UVI, wasser, water

2017 – Degradation of opaque quartz-glass diffusers under high intensity UV irradiation

1. octobre 2017 von sglux

N. Papathanasiou, G. Hopfenmüller, Michael Matalla, T. Weiss,
sglux GmbH, Berlin, Germany

Presentation on IUVA World Congress Spotlights Water Disinfection Technologies 2017, Dubrovnik, Croatia

Abstract
In UV water purification applications UV sensors are monitoring the dosage of UV irradiation as according to ÖNORM and DVGW standards. sglux GmbH is manufacturing such sensors employing opaque synthetic quartz-glass diffusers as entrance windows. This paper investigates the influence of high-intensity UV irradiation on the transmission behavior of these diffusers. Quartz-glass and micro-porous quartz-glass were investigated. The sensors were continuously monitored while irradiated by a 1kW medium pressure Hg lamp with a total UV irradiance of 1000mW/cm² for 800 hours. Before and after the aging period the total transmissions of the diffusers were measured.

Classé sous :Forschung, Veröffentlichungen und Berichte Balisé avec :diffuser, irradiance_hi, science, sensors, stability

2014 – Spectral Irradiance Measurement and Actinic Radiometer Calibration for UV Water Disinfection

23. novembre 2014 von sglux

P. Sperfeld¹, B. Barton¹, S. Pape¹, A. Towara¹, J. Eggers², G. Hopfenmueller³,
¹Physikalisch-Technische Bundesanstalt Braunschweig und Berlin (PTB), Germany, ²DVGW-Technologiezentrum Wasser, Karlsruhe, Germany, ³sglux GmbH, Berlin, Germany

Proceedings of NEWRAD 2014, edited by S. Park, P. Kaerhae and E. Ikonen. (Aalto University, Espoo, Finland 2014) p. 128.

Abstract
In a joint project, sglux and PTB investigated and developed methods and equipment to measure the spectral and weighted irradiance of high-efficiency UV-C emitters used in water disinfection plants. A calibration facility was set up to calibrate the microbicidal irradiance responsivity of actinic radiometers with respect to the weighted spectral irradiance of specially selected Hg low-pressure and medium-pressure UV radiators. To verify the calibration and to perform on-site tests, spectral measurements have been carried out directly at water disinfection plants in operation. The weighted microbicidal irradiance of the plants was calculated and compared to the measurements of various actinic radiometers.

Classé sous :Forschung, Veröffentlichungen und Berichte Balisé avec :irradiance_hi, önorm, science, water

2013 – Developing and setting up a calibration facility for UV sensors at high irradiance rates

7. octobre 2013 von sglux

B. Barton¹, P. Sperfeld¹, A. Towara¹, G. Hopfenmueller²,
¹Physikalisch-Technische Bundesanstalt Braunschweig und Berlin (PTB), 4.1 Photometry and Applied Radiometry, Braunschweig, Germany, ²sglux GmbH, Berlin, Germany

EMEA Regional Conference, Karlsruhe, Germany (2013)

Abstract
PTB provides spectral irradiance calibrations traceable to national primary standards and the SI system. A transfer standard source for high UV irradiances has been constructed and characterized. A medium pressure Hg lamp and a low pressure Hg lamp provide different spectra at different irradiance levels. The system might serve as a calibration facility for DVGW & ÖNORM conform UV sensors. Calibration by direct substitution to reference sensors can be carried out.

Classé sous :Forschung, Veröffentlichungen und Berichte Balisé avec :calibration, irradiance_hi, önorm, science

  • 1
  • 2
  • Page suivante »

Adresse

sglux GmbH
Richard-Willstätter-Str. 8
12489 Berlin, Germany
Tel: +49 (0) 30 53 01 52 11
Fax: +49 (0) 30 53 01 52 09
Mail:

sglux délivre partout dans le monde

Comme alternative, nous sommes représentés par nos partenaires de vente FARNELL et DISTRILEC, qui couvrent plus de 80 pays.

Dans votre région, la liste de spécialistes ci-dessous distribue nos produits et offrent leur assistance (presque) 24h/24 pour trouver la meilleure solution pour vos mesures UV:

Distributeurs
sglux GmbH 2024
Richard-Willstätter-Str. 8
D-12489 Berlin
Tel: +49 (0) 30 53 01 52 11
Mail: welcome@sglux.de
Mentions légales Protection des données
We do not use any cookies for tracking or analyzing of your website visit. However, technical cookies are needed to enable shop orders and to follow your language preferences.
Imprint | Privacy Policy
I accept cookies