sglux-logo
bag-icon
Generic filters
Exact matches only
es
  • Tienda
    • Fotodiodos UV
    • TOCONs UV
      Fotodiodos con amplificador de medida integrado
    • Sondas de medición UV
    • Radiómetros UV
    • Soluciones personalizadas
    • Calibración UV
    • Medición del Índice UV
    • Transductores de medida para fotodiodos
  • Investigación
  • Sobre nosotros
  • Contacto
    • Distribuidores
    • Politica de privacidad
    • Aviso legal
  • DE
  • EN
  • ES
  • FR

sglux

UV is our Business

  • DE
  • EN
  • ES
  • FR
Generic filters
Exact matches only
  • Tienda
  • Investigación
  • Sobre nosotros
  • Contacto
Inicio / Productos / Fotodiodos UV / Índice UV (Eritémico) / SG01L-E5D

SG01L-E5D

  • Eritema UV (UVI)
  • Área detectora 1.00 mm²
  • Encapsulado metálico TO5 sellado herméticamente, 1 pin aislado y 1 pin al encapsulado
  • Para mediciones de Índice UV según ISO 17166 con corrección coseno, error de medición menor al 5%
  • 1 UVI (2.5 µW/cm²) resultando en una corriente aprox. de 1.3 nA
  • Chip SiC con informe PTB de la máxima resistencia a la alta radiación

Precio unitario: 160,00€

  • Descripción
  • CAD
  • Quantity prices for sample orders
  • Publicaciones

Descargar hoja de datos

Download
a partir de 1 unidad = EUR 160,00 / unidad

Para cantidades superiores, póngase en contacto con nosotros.

Publicaciones

2024 – Measuring UV radiation without filters – silicon carbide (SiC) photodiodes make it possible
Dr. Niklas Papathanasiou, sglux GmbH, Berlin, Germany

Sensor Magazin 2/2024 (c) Magazin Verlag

Abstract
For more than 20 years, the Berlin-based company sglux GmbH has been producing photodiodes and sensors for measuring UV radiation, as used in many areas of industrial production, medical technology, combustion control and for monitoring UV disinfection processes. The precise detection of the ultraviolet irradiance is of great importance for a controlled and efficient functioning. sglux solves these tasks with SiC-based photodiodes, since 2009 from in-house semiconductor production. SiC photodiodes have an advantage in the detection of UV radiation due to their high band gap of 3.26 eV, as they are insensitive to visible and near-infrared radiation. In addition, SiC photodiodes have very low dark currents, so that even the smallest amounts of radiation can be detected. In the measurement of strong UV radiation, SiC scores with its high resistance to degradation.

2023 – 4H-SiC PIN Photodiode for VUV Detection Using an Enhanced Emitter Doping Design
M. Schraml¹, N. Papathanasiou², A. May¹, M. Rommel¹, T. Erlbacher³
¹Fraunhofer IISB, Erlangen, Germany
²sglux GmbH, Berlin, Germany
³Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

2023 IEEE Photonics Conference (IPC) 12. – 16.11.2023

4H-SiC PIN Photodiode for VUV Detection Using an Enhanced Emitter Doping Desig

Abstract
The fabrication of a novel Vacuum UV (VUV) sensitive 4H-SiC pin photodiode is presented. Aluminum ion implantation was used to fabricate a patterned emitter structure with p – and p + regions resulting in the highest reported VUV sensitivity for a SiC pin photodiode.

2021 – How two sglux photodiodes contribute to the NASA 2021 Perseverance mission
Luther W. Beegle et al.
Space Sci Rev (2021) 217:58

Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation

Abstract
The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) is a robotic arm-mounted instrument on NASA’s Perseverance rover. SHERLOC has two primary boresights. The Spectroscopy boresight generates spatially resolved chemical maps using fluorescence and Raman spectroscopy coupled to microscopic images (10.1 μm/pixel). The second boresight is a Wide Angle Topographic Sensor for Operations and eNgineering (WATSON); a copy of the Mars Science Labora- tory (MSL) Mars Hand Lens Imager (MAHLI) that obtains color images from microscopic scales (∼13 μm/pixel) to infinity. SHERLOC Spectroscopy focuses a 40 μs pulsed deep UV neon-copper laser (248.6 nm), to a ∼100 μm spot on a target at a working distance of ∼48 mm. Fluorescence emissions from organics, and Raman scattered photons from organics and minerals, are spectrally resolved with a single diffractive grating spectrograph with a spectral range of 250 to ∼370 nm. Because the fluorescence and Raman regions are natu- rally separated with deep UV excitation (<250 nm), the Raman region ∼ 800 – 4000 cm−1 (250 to 273 nm) and the fluorescence region (274 to ∼370 nm) are acquired simultaneously without time gating or additional mechanisms. SHERLOC science begins by using an Aut- ofocus Context Imager (ACI) to obtain target focus and acquire 10.1 μm/pixel greyscale images. Chemical maps of organic and mineral signatures are acquired by the orchestration of an internal scanning mirror that moves the focused laser spot across discrete points on the target surface where spectra are captured on the spectrometer detector. ACI images and chemical maps (< 100 μm/mapping pixel) will enable the first Mars in situ view of the spa- tial distribution and interaction between organics, minerals, and chemicals important to the assessment of potential biogenicity (containing CHNOPS). Single robotic arm placement chemical maps can cover areas up to 7×7 mm in area and, with the < 10 min acquisition time per map, larger mosaics are possible with arm movements. This microscopic view of the organic geochemistry of a target at the Perseverance field site, when combined with the other instruments, such as Mastcam-Z, PIXL, and SuperCam, will enable unprecedented analysis of geological materials for both scientific research and determination of which sam- ples to collect and cache for Mars sample return.

2020 – Inter-Comparison Campaign of Solar UVR Instruments under Clear Sky Conditions at Reunion Island (21°S, 55°E)
Jean-Maurice Cadet¹, Thierry Portafaix¹, Hassan Bencherif¹², Kévin Lamy¹, Colette Brogniez³, Frédérique Auriol³, Jean-Marc Metzger⁴, Louis-Etienne Boudreault⁵, Caradee Yael Wright⁶⁷
¹LACy, Laboratoire de l’Atmosphère et des Cyclones (UMR 8105 CNRS, Université de La Réunion, Météo-France), 97744 Saint-Denis de La Réunion, France.
²School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4041, South Africa. ³Laboratoire d’Optique Atmosphérique, Université Lille, CNRS, UMR 8518, F-59000 Lille, France. ⁴Observatoire des Sciences de l’Univers de la Réunion, UMS 3365, 97744 Saint-Denis de la Réunion, France.
⁵Reuniwatt, 97490 Sainte Clotilde de la réunion, France.
⁶Department of Geography, Geo-informatics and Meteorology, University of Pretoria, Pretoria 0002, South Africa.
⁷Environment and Health Research Unit, South African Medical Research Council, Pretoria 0001, South Africa.

Int J Environ Res Public Health. 2020 Apr 21;17(8):2867. doi: 10.3390/ijerph17082867

Abstract
Measurement of solar ultraviolet radiation (UVR) is important for the assessment of potential beneficial and adverse impacts on the biosphere, plants, animals, and humans. Excess solar UVR exposure in humans is associated with skin carcinogenesis and immunosuppression. Several factors influence solar UVR at the Earth’s surface, such as latitude and cloud cover. Given the potential risks from solar UVR there is a need to measure solar UVR at different locations using effective instrumentation. Various instruments are available to measure solar UVR, but some are expensive and others are not portable, both restrictive variables for exposure assessments. Here, we compared solar UVR sensors commercialized at low or moderate cost to assess their performance and quality of measurements against a high-grade Bentham spectrometer. The inter-comparison campaign took place between March 2018 and February 2019 at Saint-Denis, La Réunion. Instruments evaluated included a Kipp&Zonen UVS-E-T radiometer, a Solar Light UV-Biometer, a SGLux UV-Cosine radiometer, and a Davis radiometer. Cloud fraction was considered using a SkyCamVision all-sky camera and the Tropospheric Ultraviolet Visible radiative transfer model was used to model clear-sky conditions. Overall, there was good reliability between the instruments over time, except for the Davis radiometer, which showed dependence on solar zenith angle. The Solar Light UV-Biometer and the Kipp&Zonen radiometer gave satisfactory results, while the low-cost SGLux radiometer performed better in clear sky conditions. Future studies should investigate temporal drift and stability over time.

2019 – UV degradation anaylsis of SiC and AlGaN based UV photodiodes
Dr. Niklas Papathanasiou, sglux GmbH, Berlin, Germany

SiC AlGaN Aging Report

Abstract
SiC and AlGaN based UV photodiodes had been irradiated by Hg medium pressure lamps for 90 hours and a UV irradiation intensity of 60mW/cm². The SiC photodiodes showed no measurable degradation whereas the AlGaN photodiodes lost 80 % – 85 % of sensitivity.

2017 – UV Index monitoring in Europe
Alois W. Schmalwieser¹, Julian Gröbner², Mario Blumthaler³, Barbara Klotz³, Hugo De Backer⁴, David Bolsée⁵, Rolf Werner⁶, Davor Tomsic⁷, Ladislav Metelka⁸, Paul Eriksen⁹, Nis Jepsen⁹, Margit Aun¹⁰, Anu Heikkilä¹¹, Thierry Duprat¹², Henner Sandmann¹³, Tilman Weiss¹⁴, Alkis Bais¹⁵, Zoltan Toth¹⁶, Anna-Maria Siani¹⁷, Luisa Vaccaro¹⁸, Henri Diémoz¹⁹, Daniele Grifoni²⁰, Gaetano Zipoli²¹, Giuseppe Lorenzetto²², Boyan H. Petkov²³, Alcide Giorgio di Sarra²⁴, Francis Massen²⁵, Charles Yousif²⁶, Alexandr A. Aculinin²⁷, Peter den Outer²⁸, Tove Svendby²⁹, Arne Dahlback³⁰, Bjørn Johnsen³¹, Julita Biszczuk-Jakubowska³², Janusz Krzyscin³³, Diamantino Henriques³⁴, Natalia Chubarova³⁵, Predrag Kolarž³⁶, Zoran Mijatovic³⁷, Drago Groselj³⁸, Anna Pribullova³⁹, Juan Ramon Moreta Gonzales⁴⁰, Julia Bilbao⁴¹, José Manuel Vilaplana Guerrero⁴², Antonio Serrano⁴³, Sandra Andersson⁴⁴, Laurent Vuilleumier⁴⁵, Ann Webb⁴⁶, and John O’Hagan⁴⁷,

¹University of Veterinary Medicine, Unit of Physiology and Biophysics, Vienna, Austria, ²PMOD/WRC, Davos Dorf, Switzerland, ³Medical Univ. Innsbruck, Innsbruck, Austria, ⁴Royal Meteorological Institute of Belgium, Observations, Brussels, Belgium, ⁵Royal Belgian Institute for Space Aeronomy, Brussels, Belgium, ⁶Bulgarian Academy of Sciences, Stara Zagora, Bulgaria, ⁷Metorological and hydrological institute of Croatia, Metorological and hydrological institute of Croati, Croatia, ⁸Czech Hydrometeorological Institute, Solar and Ozone Department, Hradec Kralove, Czech Republic, ⁹Danish Meteorological Institute, Copenhagen, Denmark, ¹⁰Tartu Observatory, Tartumaa, Estonia, ¹¹Finnish Meteorological Institute, Helsinki, Finland, ¹²Météo-France, Toulouse Cedex, France, ¹³Bundesamt fur Strahlenschutz Neuherberg, Section for Optical Radiation, Neuherberg, Germany, ¹⁴sglux GmbH, Berlin, Germany, ¹⁵Aristotle University of Thessaloniki, Greece, ¹⁶Hungarian Meteorological Service, Marczell György Main Observatory, Budapest, Hungary, ¹⁷Sapienza Universita’ di Roma, Physics Department, Rome, Italy, ¹⁸ISPRA, Physical Agents Unit, Rome, Italy, ¹⁹ARPA Valle d’Aosta loc, Saint-Christophe, Italy, ²⁰LaMMA Consortium, Institute of Biometeorology of the National Research Council, Sesto Fiorentino, Italy, ²¹CNR-IBIMET, Florence, Italy, ²²ARPA di Vicenza, Vicenza, Italy, ²³National Research Council, Institute of Atmospheric Sciences and Climate, Bologna, Italy, ²⁴ENEA, Laboratory for Observations and Analyses of the Earth and Climate, Rome, Italy, ²⁵Lycée Classique de Diekirch, Computarium and meteoLCD, Diekirch, Luxembourg, ²⁶University of Malta, Institute for Sustainable Energy, Marsaxlokk, Malta, ²⁷Institute of Applied Physics of the Academy of Sciences of Moldova, Kishinev, Moldova (the Republic of), ²⁸Dutch National Health Institute (RIVM), Netherlands, ²⁹NILU – Norwegian Institute for Air Research, Kjeller, Norway, ³⁰University of Oslo, Institute of Physics, Oslo, Norway, ³¹Statens Stralevern, Monitoring and Research, Oesteras, Norway, ³²Institute of Meteorology and Water Management, Gdynia, Poland, ³³Institute of Geophysics, Polish Academy of Sciences, Warszw, Poland, ³⁴Instituto Português do Mar e da Atmosfera, Observatório Afonso Chaves, Ponta Delgada S. Miguel, Portugal, ³⁵Moscow State University, Moscow, Russian Federation, ³⁶University of Belgrade, Zemun, Serbia, ³⁷University of Novi Sad, Novi Sad, Serbia, ³⁸Slovenian Environment Agency, Ljubljana, Slovenia, ³⁹Slovakian Academy of Sciences, Tatranska Lomnica, Slovakia, ⁴⁰Spanish Meteorological Agency, Area of Atmospheric Observation Networks, Madrid, Spain, ⁴¹University of Valladolid, Valladolid, Spain, ⁴²National Institute for Aerospace Technology, Mazagon, Spain, ⁴³University of Extremadura, Department of Physics, Badajoz, Spain, ⁴⁴SMHI, Norköpping, Sweden, ⁴⁵MeteoSwiss, Atmospheric data division, Payerne, Switzerland, ⁴⁶University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland, ⁴⁷Public Health England Centre for Radiation Chemical and Environmental Hazards, Radiation Dosimetry, Didcot, United Kingdom of Great Britain and Northern Ireland

Journal: Photochemical & Photobiological Sciences, Publisher: The Royal Society of Chemistry.

Abstract
The UV Index was established more than 20 years ago as a tool for sun protection and health care. Shortly after its introduction, UV Index monitoring started in several countries either by newly acquired instruments or by converting measurements from existing instruments into the UV Index. The number of stations and networks has increased over the years. Currently, 160 stations in 25 European countries deliver online values to the public via the Internet. In this paper an overview of these UV Index monitoring sites in Europe is given. The overview includes instruments as well as quality assurance and quality control procedures. Furthermore, some examples are given about how UV Index values are presented to the public. Through these efforts, 57% of the European population is supplied with high quality information, enabling them to adapt behaviour. Although health care, including skin cancer prevention, is cost-effective, a proportion of the European population still doesn’t have access to UV Index information.
2012 – Highly reliable Silicon Carbide photodiodes for visible-blind ultraviolet detector applications
D. Prasai¹, W. John¹, L. Weixelbaum¹, O. Krueger¹, G. Wagner², P. Sperfeld³, S. Nowy³, D. Friedrich³, S. Winter³ and T. Weiss⁴,
¹Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Berlin, Germany, ²Leibniz-Institut fuer Kristallzuechtung, Berlin, Germany, ³Physikalisch-Technische Bundesanstalt Braunschweig und Berlin (PTB), 4.1 Photometry and Applied Radiometry, Braunschweig, Germany, ⁴sglux GmbH, Berlin, Germany

J. Mater. Res., first view (2012).

Abstract
Highly efficient polytype 4H silicon carbide (4H-SiC) p–n diodes for ultraviolet (UV) light detection have been fabricated, characterized, and exposed to high-intensity mercury lamp irradiation (up to 17 mW/cm²). The behavior of the photocurrent response under UV light irradiation using a low-pressure mercury UV-C lamp (4 mW/cm²) and a medium-pressure mercury discharge lamp (17 mW/cm²) has been studied. We report on long-term UV photoaging tests performed for up to 22 mo. Results demonstrate the robustness of SiC photodiodes against UV radiation. The devices under test showed an initial burn-in effect, i.e., the photocurrent response dropped by less than 5% within the first 40 h of artificial UV aging. Such burn-in effect under UV stress was also observed for previously available polytype 6H silicon carbide (6H–SiC) p–n photodetectors. After burn-in, no measurable degradation has been detected, which makes the devices excellent candidates for high irradiance UV detector applications.
2011 – Characterisation of SiC photodiodes for high irradiance UV radiometers
S. Nowy¹, B. Barton¹, S. Pape¹, P. Sperfeld¹, D. Friedrich¹, S. Winter¹, G. Hopfenmueller², and T. Weiss²,
¹Physikalisch-Technische Bundesanstalt Braunschweig und Berlin (PTB), 4.1 Photometry and Applied Radiometry, Braunschweig, Germany, ²sglux GmbH, Berlin, Germany

Proceedings of NEWRAD2011, edited by S. Park and E. Ikonen. (Aalto University, Espoo, Finland, 2011) p. 203.

Abstract
For monitoring high UV irradiance, silicon carbide (SiC) based photodiodes are used. In this paper we describe the characterization of the novel SiC UV photodiodes in terms of their spectral and integral responsivity. Special attention is paid to the aging behavior of the photodiodes due to high UV irradiance. Artificial aging of the samples is performed by illumination with a high power medium pressure mercury discharge lamp.

Ver todas las publicaciones

Con gusto le asesoramos sobre este producto

Romana Sonnenberg
Romana Sonnenberg
Dipl.-Ing.

+49 (0) 30 53015211
Tilman Weiss
Tilman Weiss
Dr.-Ing.

+49 (0) 30 53015211

Warenkorb

Fotodiodos UV FAQ

Why are there photodiodes with different chip active areas?
Summary:
Decreasing irradiance requires increasing chip active area. If the irradiance to be measured is unknown, an L-chip photodiode should be used for prototypes.
Detailed answer:
The active area of the chip determines how many photons can be collected by a photodetector. Semiconductor detectors, such as SiC UV photodiodes, convert photons into an electrical current, the photocurrent I. This photocurrent increases linearly with the irradiance and the active area of the chip. Since the price of the detector increases with the active area, the choice of area is essentially a compromise between cost and photocurrent. If you know the minimum and maximum irradiance you wish to measure with the UV photodiode, the following simplified formula gives a rough estimate of the photocurrent I for a given chip active area AChip. I=Achip *Eλ *1000 where I is the photocurrent in nA, A is the active chip area in mm² (enter values of 0.06 or 0.2 or 0.5 or 1 or 1.82 or 7.6 or 36) and Eλ is the spectral irradiance of the UV light source you like to measure in mW/cm². The minimum current (photodiode output at the lowest irradiance to be measured) should not be less than 500pA. If you do not know Eλ, the L-chip (1.00mm²) type photodiode should be used for a first evaluation step.
When do I need a broadband photodiode and when do I need filtered photodiodes for UVA, UVB, UVC or UV index?
Summary:
For UV measurement, unfiltered broadband SiC is used by default
Detailed answer:
By default, unfiltered broadband SiC is used for UV measurements. If a UV source also emits radiation that must not contribute to the sensor’s signal (e.g. UV medium pressure lamps used for water or air purification that also emit non-germicidal UV radiation), a filtered SiC detector (UVC, UVB+C or UVA only) should be selected.
Which photodiode do I use for 185nm and 172nm?
Summary:
Our SiC-VUV photodiodes are used here.
Detailed answer:
Our standard SiC photodiodes only have a low sensitivity below 220nm. Below approx. 200nm they have they no longer have any sensitivity. For applications where radiation below 220nm needs to be measured, our VUV (“vaccum UV”) photodiodes are used. Typical applications are the destruction (cracking) of organic carbons in fat or in water (TOC) at 185nm or the matting of paints at 172nm. VUV photodiodes are also used to monitor PFAS photolysis.
Do you produce SMD type photodiodes?
Summary:
Yes, but we do not recommend their use.
Detailed answer:
Yes, we manufacture 3535 SMD type photodiodes (ceramic package), but we recommend the use of metal TO photodiodes. The packaging and hermetic sealing of photodiode chips in metal TO housings with a fused glass window is a mature and extremely reliable process that has been in use for more than 50 years. A TO-packaged sglux SiC UV photodiode is usually the most reliable and durable component in a product, even when exposed to very high UV radiation or operated at high temperature levels. However, recent progress in the development of long life UV LEDs, also in the UVC range, allow UV low pressure tubes to be replaced by these LEDs, resulting in a significant potential reduction in product dimensions. The miniaturization of products such as UV transmittance measurement modules or point-of-use LED UVC disinfection modules allows our customers to move into new areas of application. Sometimes our TO-packaged UV photodiodes are considered too bulky. Our SiC SMD photodiode range is designed for these applications. The package consists of a ceramic body with a mineral window glass to make these SMD photodiodes as reliable as possible. However, TO type photodiodes remain the best choice in terms of durability, reliability and price.
You produce photodiodes with 2 pins and with 3 pins. What is the third pin good for?
Summary:
By default, 2-pin photodiodes are used.
Detailed answer:
By default, 2-pin photodiodes are used. One pin is connected to the metal body of the photodiode and to the anode. The other pin is isolated and connected to the cathode. A 3-pin photodiode is characterized by two isolated pins (connected to the anode and cathode) and one pin connected to the metal case. The 3-pin photodiode is used if the photodiode package is in contact with metal components of the customer's product.
What is the response time of a SiC photodiode?
Summary:
The response time is about 190ps (FWHM).
Detailed answer:
At the Helmholtz-Zentrum Berlin, investigations were carried out on pulse excitation with 266 nm fs laser pulses. The response time of the measured SiC photodiodes is determined by a decay constant of 7 ns at 0 V BIAS voltage. At a maximum BIAS voltage of -160 V, this converges in an exponential relationship towards 3.5 ns. The rise time could not be measured precisely with the available setup, but is faster than 80 ps (sigma), i.e. approx. 190 ps (FWHM).
What about the saturation of the photodiodes?
Summary:
An S-chip type photodiode saturates at around 4.2 kW/cm². Such a high irradiance is very unusual.
Detailed answer:
The saturation current Isat of a photodiode is determined by its open circuit voltage VOC and its series resistance RS according to the formula: Isat = VOC / RS A typical value (SiC photodiode) for VOC is 2.0 V and for RS = 5 Ohm. This gives Isat = 2.0 V / 5 Ohm = 0.4 A = 400 mA. The saturation radiant intensity z is calculated using the formula below: z = Isat / (S * A) Where S is the sensitivity of a photodiode and A is the active area. A typical value for S is 0.16 A/W and A = 0.06 mm² (valid for SG01S). This gives: zsat = 0.4 A / (0.160 A/W * 6 * 10-8 m²) = approx. 42 MW/m² = 4.2 kW/cm². Such a high irradiance is very unusual. However, some laser measurement applications can reach such irradiance levels for short periods of time. This may affect the output current of the photodiode. Please contact us for further information.
Is the photodiode waterproof?
Summary:
Yes.
Detailed answer:
Yes, the photodiode is hermetically sealed and, accordingly, water pressure proof. However, the rear side contact pins must not get in contact with water our moisture. This will influence the photodiode’s output current.
sglux GmbH 2024
Richard-Willstätter-Str. 8
D-12489 Berlin
Tel: +49 (0) 30 53 01 52 11
Mail: welcome@sglux.de
Aviso legal Politica de privacidad LinkedIn
We do not use any cookies for tracking or analyzing of your website visit. However, technical cookies are needed to enable shop orders and to follow your language preferences.
Imprint | Privacy Policy
I accept cookies