Johanna Luise Krueger², Dr. Niklas Papathanasiou¹, Stefan Langer¹, Gabriel Hopfenmueller¹, Dr. Tilman Weiss¹
¹sglux GmbH, Berlin, Germany, ²University of Freiberg, Germany
50th Annual Conference of the Radiation Protection Association 2018, Dresden, Germany
Abstract
Environmental data are collected to improve health-related quality of life of citizens. The solar UV-Index provides a good indicator for reasonable sun protection measures and duration of sun light exposure for safety officers and individuals. In Germany the “Bundesamt für Strahlenschutz” manages a solar UV-measurement network to monitor the UV-Index. At ten sites distributed all over Germany spectroradiometers are operated to measure the solar spectrum. The spectroradiometers are expensive and need highly qualified personnel to be operated. Robust and low-maintenance SiC-based UV-Index-radiometers are a viable option to increase the density of this measurement network at low cost. The spectral sensitivity function of such UV-Index-radiometers must reproduce the erythemal action function according to ISO 17166 with high precision.
In this contribution we investigate the effect of production tolerances in the spectral response of SiC-based UV-Index-radiometer (SiC-UVI-radiometer) onto the precision of the measured UV-Index. This is performed by folding a large number of different sun spectra with a variety of spectral responses of actual SiC-UVI-radiometer and the erythemal action curve as defined in the ISO 17166. We can show that the measurement uncertainty of SiC-based UVI-radiometers is ±5 % and therefore in the range of spectroradiometers. We simulated UVI measurements for SiC-based UVI-radiometers with over 2000 different sun spectra and determined a discrepancy-correction-function, which allows a precise UVI-measurement.